Войти

Ultra-shockproof foam nanobrony surpassed Kevlar

2778
0
0
Image source: Изображение: Carlos Portela et al

Engineers from the Massachusetts Institute of Technology, the California Institute of Technology and the Zurich Higher Technical School have demonstrated that materials created from nanoscale structures thinner than a human hair do not allow microparticles flying at supersonic speed to break through them. Such structures can become the basis for effective armor, protective coatings and explosion-proof shields for sensitive electronics, for example, in the defense and aerospace industries. The results of the study are presented in an article published in the journal Nature Materials.

Specialists have created a three-dimensional carbon material with a nanostructure using two-photon lithography, when a laser beam moves through a liquid photosensitive resin, leaving behind hardened microscopic structures. A repeating configuration in the form of a fourteen-sided rectangle was chosen as a regular structure. A similar structure is characteristic of foam Ware-Phelan, which is used in the basis of energy-saving materials and in photonics. After annealing, the structure was placed in a high-temperature vacuum furnace to produce an ultralight carbon material.

To test the stability of the structure to extreme deformation, the team conducted experiments on microparticle impacts at the Massachusetts Institute of Technology. The laser was directed through a slide coated with a thin film of gold, which itself is covered with a layer of silicon oxide microparticles with a diameter of 14 microns. Passing through the glass, the laser generates tiny plasma explosions in the gold layer and thus pushes the silicon particles in the direction of the laser. The particle velocity can reach 40-1100 meters per second.

It turned out that the material dissipates the impact energy with an efficiency superior to traditional impact-resistant materials such as steel, aluminum, polymethylmethacrylate and Kevlar. Ultra-high-speed imaging and confocal microscopy have shown that the strength is provided by such mechanisms as the formation of compact seals (compact cratering) instead of excavating the material and the capture of microparticles formed from the impact. In other words, the microparticles were embedded in the material, and did not break through it.

A material with a nanoarchitecture consists of ordered structures of a nanometer scale, which, depending on how they are arranged, give the necessary properties. Scientists have proved that it is possible to predict how much damage will be caused to a material depending on the particle velocity and the density of the material itself using the pi theorem, similar to the fall of a meteorite on a planet.


Alexander Enikeev

The rights to this material belong to
The material is placed by the copyright holder in the public domain
  • The news mentions
Проекты
Do you want to leave a comment? Register and/or Log in
ПОДПИСКА НА НОВОСТИ
Ежедневная рассылка новостей ВПК на электронный почтовый ящик
  • Discussion
    Update
  • 12.01 16:07
  • 96
Russia has adopted the new Terminator-2 tank support combat vehicle, designed specifically for street fighting: this is a real "death harvester"! (Sohu, China)
  • 12.01 15:47
  • 6942
Without carrot and stick. Russia has deprived America of its usual levers of influence
  • 12.01 14:46
  • 1439
Корпорация "Иркут" до конца 2018 года поставит ВКС РФ более 30 истребителей Су-30СМ
  • 12.01 10:00
  • 9
Против дронов и скрытых целей. В российскую армию поступают новые зенитки
  • 11.01 09:47
  • 1
Военная приемка. «Ту-160М. Стратегический. Сверхзвуковой»
  • 11.01 09:25
  • 0
Европейские «непризнатели»
  • 10.01 20:50
  • 1
A crewless combat boat for Ukraine is being developed in the UK
  • 10.01 11:31
  • 4
В Госдуме раскрыли характеристики российского истребителя поколения 6++
  • 10.01 05:05
  • 5
В зоне СВО заметили необычную «Мальву»
  • 10.01 01:51
  • 2
Глава МИД Франции: ЕС не позволит США вторгнуться в Гренландию
  • 10.01 01:34
  • 0
Что может восприниматься участниками СВОйны как победа/поражение?
  • 09.01 23:59
  • 0
Какие шансы у NATO пережить результаты завершения СВОйны?
  • 09.01 19:26
  • 2
Artificial intelligence will be the main weapon in the wars of the future
  • 09.01 19:07
  • 1
Немецкий концерн Rheinmetall поставил Украине первую новейшую БМП
  • 09.01 18:59
  • 1
"From ore to ammunition": analysts in Britain "figured out" how to deprive the Russian Armed Forces of an advantage in artillery