В лаборатории функциональных материалов и устройств для наноэлектроники Московского Физтеха в 2025 году завершили испытания промышленных прототипов энергонезависимой памяти на основе сегнетоэлектрического оксида гафния (HfO₂), созданных совместно с российскими разработчиками микросхем и полупроводниковыми производствами. О чем идет речь?
Эта российская разработка направлена на создание конкурентоспособного решения для микроэлектроники, сочетающего высокую скорость, низкое энергопотребление и значительный ресурс перезаписи. Сразу стоит заметить, что проект имеет достаточно большие сроки и относится именно к разработкам собственных российских технологий, важных для будущего нашей микроэлектроники.
Традиционная сегнетоэлектрическая память (FRAM) на основе перовскитных материалов не получила широкого распространения из-за технологической несовместимости с кремниевыми процессами и ограничений по масштабированию. Перелом произошел в 2011 году с открытием сегнетоэлектрических свойств в легированном оксиде гафния — материале, уже используемом в качестве подзатворного диэлектрика в КМОП-транзисторах. Это позволило интегрировать сегнетоэлектрические элементы в существующие техпроцессы.
В МФТИ работы начались в 2014 году, когда группой под руководством Андрея Маркеева были получены первые сверхтонкие (2,5 нм) сегнетоэлектрические пленки HfO₂-ZrO₂ методом атомно-слоевого осаждения.
Дальнейшие исследования сосредоточились на трех основных архитектурах: 1) памяти на конденсаторах (FRAM), 2) на транзисторах (FeFET) и на 3) туннельных переходах.
Каждая из них обладает специфическими преимуществами. FeFET, например, обеспечивает недеструктивное считывание, высокую плотность (~10 Гбит) и на порядки больший ресурс перезаписи по сравнению с флеш-памятью. Туннельные переходы, кроме того, проявляют мемристорные свойства, что открывает перспективы для создания нейроморфных вычислительных систем.
Основные усилия коллектива были направлены на оптимизацию ключевых параметров для перехода от лабораторных образцов к промышленным изделиям. Исследования включали изучение микроскопических механизмов переключения поляризации, природы наноразмерных доменов, а также эффектов деградации. К 2021 году были разработаны физические принципы повышения надежности устройств, что позволило перейти к созданию опытных образцов.
Практическая реализация технологии потребовала кооперации с промышленными партнерами при поддержке Фонда перспективных исследований. В рамках совместного проекта с НИИМЭ, НИИИС и ПАО «Микрон» отработали цикл изготовления, включающий рост сегнетоэлектрических слоев в МФТИ и дальнейшую обработку на промышленных линиях.
В результате был создан и испытан в 2025 году функциональный прототип микросхемы памяти. Хотя его емкость и характеристики требуют дальнейшего улучшения, продемонстрирована принципиальная возможность промышленного производства.
![]() |
| Принципиальная схема проведенного синхротронного эксперимента по измерению распределения электрического потенциала в наноразмерных слоях сегнетоэлектрического HfO2-ZrO2. |
| Источник: tehnoomsk.ru |
Специально созданный прототип ячейки памяти был помещен в сверхвысоковакуумную камеру электронного спектрометра, при этом он был подключен к аппаратуре, контролирующей ее электрическое состояние и позволяющий переключать направление поляризации прямо под рентгеновским пучком. При скользящем (~0,5 градуса) падении сфокусированного рентгеновского излучения на поверхность ячейки можно добиться появления стоячей волны рентгена в структуре. Возбужденные этой волной фотоэлектроны фиксировались энергоанализатором, и сканирование по углу позволило восстановить профиль электрического потенциала по глубине слоя оксида гафния толщиной 10 нм.
Работы планируется завершить в 2026 году. Успех проекта позволит создавать в нашей стране собственные перспективные технологии памяти, востребованные для интернета вещей, портативной электроники и нейроморфных вычислений.




