Американские и британские инженеры создали насадку для лазерных резаков, позволяющую им создавать дроны — резак вырезает корпус, а насадка перемещает на него компоненты, наносит контактные дорожки и спекает их. После этого дрон может взлететь прямо с резака и приступить к работе. Статья будет представлена на конференции CHI 2021.
Как правило, при создании прототипов роботов и дронов инженеры задействуют распространенные компоненты, например, микрокомпьютеры Raspberry Pi и микропроцессоры Arduino, а также популярные моторы. Тем не менее соединять их между собой, проверять совместимость и программировать все равно приходится самостоятельно, поэтому далеко не каждый инженер-любитель может без труда создать простого робота, а тем более это сложно для людей других профессий, к примеру, ученым, которым дрон или робот нужен для решения прикладной задачи, а не сам по себе.
Для решения этой проблемы существуют проекты, в которых используется библиотека стандартных элементов: их можно собирать в единого робота в программе, после чего она выдает инструкции по сборке и соответствующее программное обеспечение, причем в некоторых случаях она даже рассчитывает параметры работы двигателей под созданную пользователем кинематическую модель.
Инженеры под руководством Штефани Мюллер (Stefanie Mueller) из Массачусетского технологического института разработали новый полуавтоматизированный метод сборки дронов из стандартных элементов (метод можно применить и для других устройств, но авторы продемонстрировали его в основном на дронах). Его главное преимущество заключается в том, что сам процесс сборки тоже максимально автоматизирован и по сути вся работа пользователя сводится к взаимодействию с программным обеспечением.
За основу инженеры решили взять лазерный резак, который используется для вырезания плоских деталей из больших листов или объемных, если делать в листе не сплошной разрез, а углубление, вдоль которого две части можно загнуть. Резак представляет собой большой аппарат с закрытым корпусом, внутри которого есть декартов механизм с подвешенной лазерной головкой, ездящей в плоскости над листом. Помимо вырезания частей корпуса для создания дрона или другого устройства нужно также оснастить его электроникой и провести между ней проводящие дорожки для питания и управления. Авторы решили эту задачу, создав насадку для лазерной головки резака, в которой есть распылитель прекурсора для проводящих дорожек, и манипулятор, который может перетаскивать электромоторы и другие компоненты на вырезанные детали корпуса.
В насадке установлено два шприца, подключенных к общему насосу. Один из них работает как пневматический захват и может поднимать большие компоненты массой до 65 грамм и небольшие чипы вплоть до типоразмера 2010 (5 на 2,5 миллиметра). Второй шприц выпускает пасту с серебряными частицами: она наносится на место будущей проводящей дорожки, а затем лазер резака нагревает ее и спекает в твердую дорожку, хорошо проводящую электричество. Таким же образом насадка закрепляет компоненты на деталях корпуса.
Схема метода
Источник изображения: Martin Nisser et al. / CHI 2021
Одно из самых необычных решений, которые авторы применили в работе — это то, как насадка получает инструкции по работе. Авторы решили не задействовать сам резак, поскольку обычно в них установлена проприетарная прошивка, доступ к которой и модификация затруднена. Вместо этого они решили вставлять в план движений лазерной головки резака дополнительные траектории, большая часть из которых нужна для перемещения насадки к нужным местам, а часть кодирует системные данные для насадки. В качестве такой траектории инженеры выбрали прямую линию длиной три миллиметра — при движении по такой траектории резак сначала создает на акселерометре насадки большое пиковое ускорение, а перед концом линии второе пиковое ускорение с обратным направлением. Такая комбинация ускорений не встречается при обычных движениях во время работы резака, поэтому ее можно использовать для подачи команд насадке: активации или деактивации одного из двух шприцов.
Траектории движения лазерной головки резака. Можно заметить, что часть траекторий дублируется со смещением — причина в том, что насадка закреплена сбоку от головки. Также можно заметить небольшие вертикальные отступы на краях траекторий — это отрезки, служащие командами для насадки
Источник изображения: Martin Nisser et al. / CHI 2021
Для создания дрона или другого устройства пользователю необходимо создать простую модель из стандартных элементов на компьютере, разместить в резаке полимерный лист для корпуса и детали (они могут уже находиться там) и дать команду на сборку. После этого резак с насадкой сам вырезает корпус, кладет на него нужные компоненты, например, моторы с винтами и управляющую плату, а затем подводит к ним проводящие дорожки. На демонстрационном ролике можно увидеть, что после этого дрон полностью готов к использованию и может взлететь прямо из резака, если его крышка открыта.
В 2017 году другая группа инженеров из Массачусетского технологического института научилась печатать на 3D-принтере электронные устройства, которые меняют свою форму уже после печати.
Григорий Копиев