Войти

Инженеры рассказали, как можно «осветить» постоянно затененные кратеры Луны

810
0
0
Лунный параболический отражатель в представлении художника
Лунный параболический отражатель в представлении художника.
Источник изображения: Texas A&M Engineering

Группа американских ученых работает над созданием отражателей, которые смогут перенаправлять солнечную энергию в затененные лунные кратеры. Это позволит будущим колонизаторам бесперебойно работать с необходимым для жизни на Луне ресурсом — залежами водяного льда, которого в таких кратерах достаточно много.

Южный полюс Луны давно привлекает умы ученых. Главная причина — там находятся постоянно затененные кратеры, где содержится много водяного льда. Будущие колонизаторы планируют добывать этот лед, чтобы с его помощью удовлетворить потребности первых лунных поселений в кислороде, воде, топливе.

Еще лунный водяной лед достаточно древний, что представляет особый интерес для ученых. Когда Луна была относительно молодой, ее поверхность часто бомбардировали богатые водой кометы, а вулканы выбрасывали водяной пар из недр (да, на нашем спутнике извергались вулканы). По мнению некоторых ученых, со временем вода и водяной пар могли превратиться в лед, который с тех пор хранится на дне кратеров, нетронутых солнечным светом.

Naked Science не раз писал, что одна из ведущих теорий образования Луны сегодня — мультиимпактная. Она гласит, что Селена образовалась из обломков, выбитых из Земли астероидами. Если это так, то древний лунный лед у полюсов должен быть по изотопному составу предельно близок к земному. Иными словами, изучая лунный лед, ученые больше узнают о происхождении Земли и Луны и, возможно, даже смогут понять, как возникла жизнь на нашей планете.

По данным, которые прислали индийский зонд «Чандраян-1» и станция NASA LRO, на дне вечно затененных лунных кратеров может находиться более 600 миллиардов килограммов водяного льда. Если его растопить, воды хватит, чтобы заполнить по меньшей мере 240 тысяч олимпийских бассейнов.

Правда, чтобы добыть этот ценный ресурс, нужна энергия, которая будет «питать» все необходимые для поиска и добычи системы. Лед постоянно находится в тени, что затрудняет доступ к нему.

Инженеры из Техасского департамента аэрокосмической техники совместно с коллегами из Научно-исследовательского центра NASA имени Ленгли предложили способ, который облегчит работу колонизаторов со льдом — специальные отражатели. О своей разработке инженеры рассказали порталу UniverseToday.

Поверхностный лед на полюсах Луны: Южный полюс слева, Северный справа. Карта составлена на основе данных индийского зонда «Чандраян-1»

Источник изображения: NASA

Технология американских исследователей представляет собой комплект из отражателей, которые устанавливаются на краю кратера, куда падает свет (так называемые пики вечного света), и приемника — он ставится на дно темного кратера. Отражатели «улавливают» свет и перенаправляют его на приемник, который, в свою очередь, будет распределять энергию по работающем в кратере системам.

Чтобы понять, какая форма отражателя будет наиболее эффективной для передачи большего количества света, инженеры применили компьютерное моделирование. По предварительным расчетам, это форма параболы.

Параболические конструкции ученые часто используют на Земле, они встречаются в различных устройствах, таких как телескопы, микрофоны и автомобильные фары, так же работают солнечные параболические отражатели. На нашей планете исследователи могут сделать эти конструкции любого размера и построить там, где нужно, но на Луне такой фокус не пройдет. Лунный отражатель должен быть очень компактным, поскольку запуск в космос лишнего килограмма груза обходится дорого.

Цель американских инженеров — создать отражатель, достаточно маленький, чтобы его можно было доставить на Луну, не переплатив лишних денег, и относительно «мощный», чтобы он смог перенаправлять максимальное количество солнечной энергии.

Чтобы убить двух зайцев сразу, исследователи разработали самоморфирующийся материал (self-morphing material) на основе природных компонентов, который способен менять форму в зависимости от окружающей среды — когда нужно увеличиваться в размерах, а когда не нужно уменьшаться.

Еще одна проблема, которую предстоит решить американским инженерам, чтобы их технология работала полноценно, — резкие перепады температур.

Видео, в котором американские инженеры подробно рассказывают о самоморфирующеся материале

В разгар дня температура на лунном экваторе может подниматься до плюс 121 градуса Цельсия, что намного жарче, чем на Земле. Но ночью она может опускаться до минус 133 градусов. На дне постоянно затененных кратеров температура вообще минус 250 градусов.

Ученые разработали еще один материал, который сможет выдержать резкий перепад температур. Это так называемый материал с эффектом памяти формы. Он сможет изменять форму отражателя в ответ на изменение температуры. То есть отражатель будет подстраивать форму, которая позволит выдержать конкретную температуру.

«Этот материал будет включать сплавы с памятью формы, которые сами регулируют отвод тепла в зависимости от того, насколько тепло или холодно вокруг. Для нас перепады температур решаемая проблема», — пояснил Даррен Хартл, один из разработчиков.

В 2019 году NASA объявило о планах вернуть людей на Луну (миссия «Артемида-3», не ранее 2026 года), а также о создании международной обитаемой окололунной станции Deep Space Gateway и постоянной базы на поверхности спутника Земли для обширных исследовательских работ. Для решения этих задач необходимы передовые технологии, так что разработанные командой американских инженеров отражатели и самоморфирующийся материал могут сыграть важную роль в успехе будущих миссий.

Права на данный материал принадлежат
Материал размещён правообладателем в открытом доступе
  • В новости упоминаются
Страны
Компании
Проекты
Хотите оставить комментарий? Зарегистрируйтесь и/или Войдите и общайтесь!
ПОДПИСКА НА НОВОСТИ
Ежедневная рассылка новостей ВПК на электронный почтовый ящик
  • Разделы новостей
  • Обсуждаемое
    Обновить
  • 21.11 16:16
  • 136
В России запустили производство 20 самолетов Ту-214
  • 21.11 16:16
  • 5805
Без кнута и пряника. Россия лишила Америку привычных рычагов влияния
  • 21.11 13:19
  • 16
МС-21 готовится к первому полету
  • 21.11 13:14
  • 39
Какое оружие может оказаться эффективным против боевых беспилотников
  • 21.11 12:38
  • 1
ВСУ получили от США усовершенствованные противорадиолокационные ракеты AGM-88E (AARGM) для ударов по российским средствам ПВО
  • 21.11 12:14
  • 0
Один – за всех и все – за одного!
  • 21.11 12:12
  • 0
Моделирование боевых действий – основа системы поддержки принятия решений
  • 21.11 11:52
  • 11
Почему переданные Украине ЗРС Patriot отнюдь не легкая мишень для ВКС России
  • 21.11 04:31
  • 0
О "мощнейшем корабле" ВМФ РФ - "Адмирале Нахимове"
  • 21.11 02:41
  • 1
Стало известно о выгоде США от модернизации мощнейшего корабля ВМФ России
  • 21.11 01:54
  • 1
Проблемы генеративного ИИ – версия IDC
  • 21.11 01:45
  • 1
«Тегеран считает Россию хрупкой и слабой»: иранский эксперт «объяснил» суть якобы возникших разногласий между РФ и Исламской Республикой
  • 21.11 01:26
  • 1
Пентагон не подтвердил сообщения о разрешении Украине наносить удары вглубь РФ американским оружием
  • 20.11 20:38
  • 0
Ответ на ""Сбивать российские ракеты": в 165 км от границы РФ открылась база ПРО США"
  • 20.11 12:25
  • 1
В России заявили о высокой стадии проработки агрегатов для Су-75