Войти

Туннельный контакт помог изучить электронную структуру углеродных нанотрубок

1191
0
0
Туннельный контакт
Туннельный контакт.
Источник изображения: rusnanonet.ru

Российские физики показали, что можно использовать туннельный контакт для спектроскопии электронных состояний углеродных нанотрубок. Предложенная технология изготовления туннельного контакта и метод спектроскопии помогут точно определять ширину запрещенной зоны нанотрубок, которая является ключевой характеристикой для разработки любых электронных устройств на их основе.

Углеродные нанотрубки - это уникальные по своей физической природе и свойствам объекты. Они активно исследуются в последние три десятилетия и могут применяться в различных областях науки и техники: в материаловедении, физике, электронике и многих других.

Углеродную нанотрубку можно рассматривать как свернутый в трубку лист графена. Уникальность свойств углеродных нанотрубок связана с тем, что от того, каким конкретно образом этот лист был свернут в трубку, зависит ширина запрещенной зоны, которая определяет полупроводниковые либо металлические свойства нанотрубки. Можно провести следующую аналогию: представьте себе обычный лист бумаги - его можно легко свернуть в трубку, соединяя либо две противоположные стороны, либо два противоположных угла, или же можно соединить угол с любой точкой на противоположной стороне. Свойства листа бумаги никак не зависят от того, каким конкретно образом его свернули в трубку. Если теперь мы заменим лист бумаги на маленький кусочек графена, то окажется, что в зависимости от того, каким именно способом мы свернули графен в трубку, он будет вести себя либо как полупроводник, либо как металл с точки зрения проводимости. Такое поведение делает углеродные нанотрубки очень привлекательным материалом для создания всевозможных электронных устройств.

Ширина запрещенной зоны - это основная характеристика полупроводников, которая в первую очередь обусловливает возможности их применения. На данном этапе развития технологий пока не придуман хороший способ выращивать углеродные нанотрубки с заранее известной шириной запрещенной зоны. В процессе синтеза могут вырастать углеродные нанотрубки с различной шириной запрещенной зоны и даже вообще без нее. Чтобы определять ширину запрещенной зоны и конкретный вид распределения электронов по энергии, для каждой отдельной трубки традиционно использовалась туннельная спектроскопия при помощи туннельного микроскопа. Этот метод имеет ряд недостатков: он неточный, дорогой и нетехнологичный.

В опубликованной работе ученые предложили технологичный (то есть хорошо совместимый с современными технологиями изготовления электронных устройств) и масштабируемый метод для определения спектра электронов одиночной углеродной нанотрубки. Для этого исследователи изготовили туннельный контакт.

Туннельный контакт - это контакт с очень высоким электрическим сопротивлением. Металл контакта связан с трубкой не напрямую, а через тонкий слой диэлектрика.

"Диэлектрик создает туннельный барьер - энергетическую стену, которая препятствует переносу носителей заряда. "Классическая" частица не может преодолеть такой барьер, но квантовая механика "позволяет" электрону проводимости или дырке пройти сквозь такой барьер, то есть протуннелировать, - комментирует один из авторов исследования Яков Матюшкин, младший научный сотрудник лаборатории наноуглеродных материалов МФТИ, стажер-исследователь и аспирант МИЭМ ВШЭ. - Важно, что вероятность туннелирования пропорциональна плотности состояний в исследуемом объекте. Благодаря этому свойству туннельный контакт позволяет сканировать распределение электронов по энергии в трубке".

Исследователи сделали серию образцов, каждый из которых представлял собой одиночную углеродную нанотрубку с двумя парами омических и двумя парами туннельных контактов. Ученые сначала вырастили на кремниевой подложке трубку, а затем присоединили к ней туннельные и омические контакты. В ходе эксперимента при температуре жидкого гелия между туннельным и омическим контактом прикладывали напряжение и измеряли электрический ток, который протекал через систему. Зависимость тока от напряжения позволила получить спектр электронов в углеродной нанотрубке и узнать ширину запрещенной зоны.

"Предложенный в работе метод позволяет не только получить информацию о зонной структуре углеродной нанотрубки, но и выяснить, как она меняется под влиянием внешних воздействий, - говорит соавтор исследования Георгий Федоров, заместитель заведующего лабораторией наноуглеродных материалов МФТИ. - В частности, в данной работе мы при помощи туннельного контакта напрямую наблюдали снятие долинного вырождения в магнитном поле. Этот давно предсказанный эффект, проявляющийся в энергетическом расщеплении максимумов плотности состояний, мы впервые продемонстрировали в случае индивидуальной нанотрубки".

Образцы были изготовлены сотрудниками лаборатории наноуглеродных материалов МФТИ на базе ЦКП МФТИ. Экспериментальная часть выполнена в проблемной радиофизической лаборатории Московского педагогического государственного университета и в ЦКП ФИАН "Исследования сильно коррелированных систем".

Работа выполнена при поддержке РФФИ, РНФ и Министерства науки и высшего образования РФ. Результаты работы были представлены в журнале Applied Physics Letters.

Информация и фото предоставлены пресс-службой НИУ ВШЭ

Права на данный материал принадлежат
Материал размещён правообладателем в открытом доступе
  • В новости упоминаются
Страны
Похожие новости
12.03.2010
Комплекс "Панцирь-С1" начнет поступать в войска в 2010 году – Сердюков
10.08.2009
На "МАКС" приедут не все
10.02.2009
В Индии открылось представительство компании "Сухой"
18.08.2008
МиГ задолжал кредиторам полтора миллиарда долларов
03.03.2008
Роботов ставят под ружьe
24.08.2007
МАКС окрылил СНГ
26.02.2007
Россия продолжит сотрудничество в военной сфере не только с традиционными союзниками, но и с новыми партнерами - В.Путин
Хотите оставить комментарий? Зарегистрируйтесь и/или Войдите и общайтесь!
ПОДПИСКА НА НОВОСТИ
Ежедневная рассылка новостей ВПК на электронный почтовый ящик
  • Разделы новостей
  • Обсуждаемое
    Обновить
  • 08.08 00:20
  • 18
Продолжается разработка перспективного тяжёлого транспортного самолёта "Слон"
  • 07.08 23:59
  • 81
Эксперт: в России могут создать специализированный ЗРК для борьбы с HIMARS
  • 07.08 23:06
  • 29987
США отреагировали на начало российских военных маневров у границ Украины
  • 07.08 22:55
  • 39
Борисов заявил о наличии у России почти всех типов БПЛА
  • 07.08 22:22
  • 1
Мирной Арктике пришел конец, и это хорошо
  • 07.08 16:26
  • 2
Ракета Atlas V с российским двигателем вывела на орбиту спутник Космических сил США
  • 07.08 13:38
  • 2
Замминистра обороны России Александр Фомин провел брифинг для иностранных военных атташе
  • 07.08 13:08
  • 2
В ЦАР ждут прибытия трех тысяч российских военных инструкторов
  • 06.08 00:55
  • 3
«Украина: гладиаторские бои»
  • 05.08 18:07
  • 1
Перед взятием Днепропетровска Россия освободит Кривой Рог
  • 05.08 17:50
  • 1
Итальянская компания разместила шеврон ЦПК на костюме для полета итальянца на SpaceShipTwo
  • 05.08 11:41
  • 2
"Алмаз-Антей" начал опытное производство многофункционального БПЛА
  • 05.08 03:27
  • 3
Новый БПЛА "Алмаз-Антея" поможет в спецоперации на Украине, заявил эксперт
  • 05.08 03:15
  • 4
Стало известно о первой возможной поставке в Россию боевых дронов из Ирана
  • 04.08 22:22
  • 1
На МКС отправят робота для дистанционной хирургии