Войти

Оксинитрид титана позволил получить перовскитные солнечные элементы с рекордной эффективностью

1233
0
0
Оксинитрид титана позволил получить перовскитные солнечные элементы с рекордной эффективностью
Оксинитрид титана позволил получить перовскитные солнечные элементы с рекордной эффективностью.
Источник изображения: Jun Peng et al. / Nature, 2022

Австралийские ученые заменили в перовскитном солнечном элементе транспортный слой диоксида титана на слой оксинитрида титана. Благодаря этому концентрация носителей заряда в слое выросла на два порядка, фактор заполнения увеличился до 86 процентов, а эффективность солнечного элемента площадью в один сантиметр — до 23,33 процента. Для перовскитных солнечных элементов такой площади это рекорд. Результаты исследования опубликованы в журнале Nature.

Чтобы солнечный элемент эффективно работал, недостаточно обеспечить поглощение света и генерацию носителей заряда. Необходимо также быстро разделить заряды, не давая им рекомбинировать, и отправить электроны к аноду, а дырки к катоду. В перовскитных солнечных элементах для извлечения электронов чаще всего используют слой широкозонного полупроводника — диоксида титана TiO2. Во время работы солнечного элемента этот слой находится сверху от активного слоя, поэтому его делают прозрачным.

Обычно он состоит из двух частей: сначала наносят тонкий (компактный) слой диоксида титана, а поверх — более рыхлый и объемный мезопористый слой из наночастиц диоксида титана, который служит подложкой для активного перовскитного слоя. Однако свойства диоксида титана неоптимальны: подвижность электронов в этом материале ограничена, а иногда его частицы выступают как центры безызлучательной рекомбинации. Поэтому ученые постоянно ищут способы, которыми можно этот материал улучшить.

Неделю назад мы писали о работе корейских и швейцарских ученых, которые заменили наночастицы оксида титана в мезопористом слое на наночастицы оксида олова, чтобы замедлить безызлучательную рекомбинацию и извлекать электроны из активного слоя более эффективно. Химики под руководством Кайли Кэчпол (Kylie R. Catchpole) из Австралийского национального университета пошли другим путем. Мезопористый слой диоксида титана они оставили без изменений, а компактный слой они решили изготовить из оксинитрида титана TiOxNy. Оксинитрид титана — это родственный диоксиду титана полупроводниковый материал. Хотя он широко применяется в фотокатализе, в перовскитных солнечных элементах до сих пор его почти не использовали.

Сначала Кэчпол и ее коллеги получили серию пленок оксинитрида титана на прозрачных проводящих подложках. Для этого они нанесли на подложки слой нитрида титана TiN, а затем обожгли его в атмосфере кислорода при температурах от 350 до 550 градусов Цельсия. В процессе обжига нитрид частично окисляется до оксинитрида.

Все полученные пленки имели одинаковую толщину около 50 нанометров и схожую морфологию, а вот химический состав у них заметно отличался. Рентген-фотоэлектронная спектроскопия показала, что с ростом температуры обжига азота в пленках становилось меньше — в пленках, которые не обжигали соотношение N/Ti было 0,62, а в пленках, обожженных при температуре 550 градусов Цельсия, оно снизилось до 0,07. Кроме того, в образцах, которые обжигали при температуре 450 градусов Цельсия и выше, титана в степени окисления +3 (как в TiN) уже не оставалось, весь титан переходил в степень окисления +4.

Диоксид титана является полупроводником n-типа, то есть основной тип носителей заряда в нем — электроны. Добавки азота и титана в степени окисления +3 для диоксида титана являются донорными примесями, поэтому авторы ожидали, что в пленках оксинитрида количество носителей заряда будет выше, чем в стандартном диоксиде титана. Так и получилось — плотность свободных носителей заряда в пленках снижалась с уменьшением количества азота (то есть с повышением температуры обжига — см. рисунок). Тем не менее даже у пленок, которые обжигались при температуре 550 градусов Цельсия, плотность носителей заряда все еще была почти на два порядка выше, чем у стандартного недопированного оксида титана (3.4 × 1016 см−3 против 4.5 × 1014 см−3). Вместе с плотностью носителей заряда росла и проводимость пленок — то есть самые лучшие транспортные свойства показывали те пленки, которые обжигались при температуре 350 градусов Цельсия.


Сравнение концентрации носителей заряда и поглощения для пленок, которые обжигались при разной температуре

Источник изображения: Jun Peng et al. / Nature, 2022


Однако у таких пленок обнаружился неожиданный недостаток — они поглощали заметно больше видимого света. Все пленки имели примерно одинаковую ширину запрещенной зоны, поэтому авторы объяснили разницу в поглощении более высоким поглощением на свободных носителях заряда. Поглощение света в транспортном слое для работы солнечного элемента невыгодно — в таком случае меньше света достается самому перовскиту. Поэтому для изготовления солнечных элементов авторы выбрали пленки с промежуточным количеством азота, которые обжигались при температуре 500 градусов Цельсия.

Кэчпол и ее коллеги сделали солнечные элементы площадью один квадратный сантиметр. Поверх слоя оксинитрида титана они нанесли мезопористый слой оксида титана, затем перовскитный слой, дырочно-транспортный слой и, наконец, золотой катод.

Солнечные элементы с транспортным слоем TiOxNy показали эффективность 23,33 процента. Это рекорд для ячеек площадью в один квадратный сантиметр.

Замена диоксида титана на оксинитрид улучшает все характеристики солнечных элементов — эффективность, ток и напряжение — но больше всего от такой замены рос фактор заполнения. Этот параметр изменяется в процентах и показывает, насколько форма вольт-амперной кривой солнечного элемента близка к прямоугольной, то есть насколько поведение солнечного элемента близко к поведению идеального диода. Фактор заполнения у солнечных элементов с оксинитридом достигал 86 процентов, в то время как у контрольных образцов с диоксидом титана он не превышал 80 процентов. Такие значения фактора заполнения — рекорд уже для перовскитных солнечных элементов любого размера.

Авторы объяснили улучшение не только лучшей проводимостью электрон-транспортного слоя, но и уменьшением эффекта обеднения — снижения концентрации электронов на границе транспортного и активного слоя по сравнению с равновесной.

Исследования первоскитных солнечных элементов не стоят на месте. Так, минувшим летом американские химики нашли более простой и быстрый способ подготовки дырочно-транспортного слоя в перовскитном солнечном элементе.

Наталия Самойлова

Права на данный материал принадлежат
Материал размещён правообладателем в открытом доступе
  • В новости упоминаются
Хотите оставить комментарий? Зарегистрируйтесь и/или Войдите и общайтесь!
ПОДПИСКА НА НОВОСТИ
Ежедневная рассылка новостей ВПК на электронный почтовый ящик
  • Разделы новостей
  • Обсуждаемое
    Обновить
  • 23.10 10:16
  • 5197
Без кнута и пряника. Россия лишила Америку привычных рычагов влияния
  • 23.10 07:26
  • 2
Запад внезапно осознал мощь БРИКС
  • 23.10 02:45
  • 0
Ответ на "TNI: Москва отказалась от этого "супертанка" и совершила большую ошибку"
  • 23.10 02:43
  • 1
На Западе заговорили о размещении на Украине «неядерных сил». О чем идет речь?
  • 23.10 02:00
  • 1
Ростех и МГУ будут развивать стратегическое партнерство в сфере наукоемких технологий
  • 22.10 23:30
  • 0
О Т-72 и Т-90.
  • 22.10 22:41
  • 0
Еще о ПВО и средствах нападения с воздуха.
  • 22.10 20:50
  • 0
Ответ на тему ""Историческая сделка с Германией". Ищут ли в Европе замену НАТО?"
  • 22.10 20:00
  • 0
Ответ на "ПВО: настоящее и будущее"
  • 22.10 19:09
  • 0
Ответ на "TNI: российский Т-72 — величайший танк в мире"
  • 22.10 16:07
  • 0
ПВО: настоящее и будущее
  • 22.10 05:47
  • 0
Ответ на тему "У России есть "пуля", которая убьет лучший американский танк (The National Interest, США)"
  • 22.10 05:46
  • 0
Ответ на "Почему эксперты не смогли предсказать российскую спецоперацию на Украине? (The National Interest, США)"
  • 22.10 03:23
  • 3
У России есть "пуля", которая убьет лучший американский танк (The National Interest, США)
  • 22.10 02:25
  • 1
"Историческая сделка с Германией". Ищут ли в Европе замену НАТО?