Исследователи Сколтеха и их коллеги из США и Сингапура создали нейронную сеть, с помощью которой можно настраивать свойства полупроводниковых кристаллов и получать компоненты для электроники с непревзойденными характеристиками. Эта работа открывает новое направление в разработке микросхем и солнечных элементов следующего поколения за счет использования контролируемой деформации, с помощью которой можно буквально на лету менять свойства материала. Статья с описанием результатов исследования опубликована в журнале npj Computational Materials.
Наноматериалы довольно успешно выдерживают интенсивные деформации. Находясь в деформированном состоянии, они проявляют необычные оптические, тепловые, электронные и другие свойства, связанные с изменениями в межатомных расстояниях. Деформация может также изменять проводимость материала: например, известный полупроводниковыми свойствами кремний в деформированном состоянии превращается в эффективный проводник.
Кроме того, оказалось, что свойства материала можно менять по мере необходимости, варьируя степень деформации. Эта концепция положила начало целому направлению исследований − инжинирингу упругих деформаций (ESE). Новый подход может стать выходом из положения по мере неуклонного приближения предела эффективности микросхем по закону Мура. Еще одна область, в которой можно использовать данный метод, – разработка солнечных элементов.
В своей предыдущей работе выпускник аспирантуры и постдок Сколтеха Евгений Цымбалов, доцент Сколтеха Александр Шапеев и их коллеги с помощью метода ESE преобразовали алмазные наноиглы из изолятора в высокопроводящий металлоподобный материал, что свидетельствует о широких прикладных возможностях технологии. В своем новом исследовании ученые представили архитектуру сверточной нейронной сети, которая позволяет применять методы ESE для полупроводников.
Данная работа продолжает и развивает предыдущие исследования.
В целях повышения точности и сходимости модели в предложенном методе используются различные источники данных: с одной стороны, это данные, не затратные в вычислительном отношении, но имеющие низкую точность, а с другой – вычислительно затратные, но точные данные.
Исследователи отмечают, что по сравнению с другими современными решениями созданная ими нейронная сеть «более универсальна, точна и эффективна с точки зрения обеспечения возможности автономного глубокого обучения применительно к электронной зонной структуре кристаллических твердых тел», что обеспечивает более высокую скорость и точность метода при поиске и оптимизации в пространстве деформации и, следовательно, получение оптимальных значений деформации для заданных показателей качества.
В предыдущей работе (см. выше) ученые протестировали более раннюю версию модели в серии экспериментов in situ с алмазом.
Данная работа проводилась в рамках многолетнего сотрудничества между Сколтехом, Массачусетским технологическим институтом (США) и Наньянским технологическим университетом (Сингапур). В ходе проекта ученые Сколтеха занимались в основном вычислительными задачами и методами машинного обучения, а их зарубежные коллеги отвечали за физические аспекты исследования.