При помощи лазерной обработки российские ученые вместе с европейскими коллегами изготовили высокочувствительные детекторы фотонов. В основе технологии лежит управление свойствами углеродных нанотрубок.
Одностенные углеродные нанотрубки состоят из свернутых в цилиндры листов графена, который построен из шестигранных углеродных "сот". Электроны в структуре нанотрубки двигаются необычно. Эти отрицательно заряженные частицы "прыгают" с одного места на другое, а там, откуда они уходят, остаются положительно заряженные "дырки". Поскольку электрический ток - направленное движение электронов, проводимость таких материалов можно регулировать. Это позволяет создавать на основе углеродных нанотрубок высокочувствительные сенсоры, транзисторы, наноантенны, светодиоды и другие устройства. К ним относятся и фотодетекторы, преобразующие оптический сигнал в электрический.
Часто ученые добавляют к конструкции нанотрубки дополнительные молекулы или покрытия, чтобы настроить характеристики материала "под заказ". Но при использовании традиционных методов (метод вытягивания, электрофорез, метод контактной и переносной печати и другие) в графеновый лист попадают примеси и образуются дефекты, ухудшающие свойства материала. Из-за этого поверхность графенового листа может потерять свои изгибы, а углеродные "соты" - форму, поэтому движение электронов в них будет не таким упорядоченным. Чтобы решить эту проблему, физики предложили модифицировать структуру одностенных углеродных нанотрубок, используя нелинейные эффекты в излучении фемтосекундного лазера (1 фемтосекунда - одна миллионная одной миллиардной секунды).
Ученым удалось создать одномерную гетероструктуру, соединив в одиночной нанотрубке две части с разными электрическими характеристиками. У одной части проводимость почти как у металла, другая имеет свойства полупроводника: ее проводимость зависит от оптического излучения. На стыке этих частей образуется аналог p-n-перехода: электроны стремятся от "металлической" части, где их больше, в другую половину, где преобладают "дырки". Проводимость полученной конструкции изменяется под действием света. На этом и основана работа фотодетектора: уловив оптическое излучение (свет), нанотрубка превратит его в электрическое.
Обработка фемтосекундным лазером оказалась быстрым, простым и эффективным методом, меняющим проводимость нанотрубки и ее реакцию на свет. Фотодетектор, разработанный учеными, способен засечь одиночный импульс длительностью 300 фемтосекунд и мощностью всего лишь 0,2 мВт/см2. Это соответствует мощностям оптических волоконных систем, которые применяются в телекоммуникации.
Кроме МИЭТ, работы по проекту проводились в Сколковском институте науки и технологий, Физическом институте имени П. Н. Лебедева РАН, Московском физико-техническом институте, Московском государственном педагогическом университете, Московском государственном университете имени М. В. Ломоносова, Центре применения лазеров AIMEN (Испания), Университете Аальто (Финляндия) и Нови-Садском университете (Сербия).
Новые детекторы помогут в разработке квантовых компьютеров, камер с высоким разрешением, более эффективных интегральных микросхем и других устройств. Работа поддержана грантом Российского научного фонда (РНФ), а статья о ее результатах опубликована в журнале Advanced Electronic Materials.
Пресс-служба Российского научного фонда
Трехмерная модель гетероперехода в нанотрубке, сформированного фемтосекундным лазером. Источник: Иван Бобринецкий/МИЭТ