Боеголовка с готовыми поражающими элементами эффективнее в борьбе с дронами, чем фугасно-осколочная
О возрастающей роли беспилотных авиационных платформ (БАП) и легких дронов в современных конфликтах свидетельствуют последние события в сирийском Идлибе, а СМИ и военные аналитики задаются вопросом: закономерна ли эффективность дронов или это связано с тем, что нет средств борьбы с такими техническими средствами ведения боевых действий? (см. И. Полонский «Военное обозрение» от 12.03.20). Вроде средств борьбы с БАП у нас достаточно – это «Панцири», «Шилки», «Торы» и т.д. и т.д., но все они смонтированы на механическом шасси и имеют такие массогабаритные характеристики, что непосредственно на переднем крае, в передовых частях участия принимать не могут. Даже в удалении нескольких километров от передовой они могут стать легкой добычей артиллерийских систем и ручных ракетных комплексов противника. В ходе динамичного боестолкновения на открытой местности, на переднем крае или в наступлении, в рядах пехотных или моторизованных войск носимых средств поражения дронов над головой у бойцов ВС нет. Средства борьбы с БАП и дронами должны быть легкие, скорострельные, со скоростями поражающих элементов более 2000 м/с и создаваться на основе новых физических принципов для метания тел, на основе изобретения МГУ им. М.В. Ломоносова № 2645099. Моя статья в «Независимом военном обозрении» от 6 декабря 2019 года наглядно демонстрирует легкость и дешевизну создания такого изделия. Так как такие ракеты способны генерировать гораздо больший импульс, чем все существующие носимые и даже станковые изделия на реактивной тяге (РПГ, «Корветы» и т.д.), то полезным грузом для ракет по изобретению МГУ могут служить боеголовки, изготовленные по нижеуказанному способу, для вооружения бойцов переднего края.
Это способ получения гиперзвуковых скоростей готовыми субмиллиметровыми твердотельными поражающими элементами с использованием кумулятивного эффекта в боевой части снарядов гранат, мин, ствольной и реактивной артиллерии, а также в противопехотном минном деле.
На практике известны способы применения детонационного кумулятивного эффекта в военном деле в виде бронебойных боеголовок, в науке – для получения больших скоростей струей квазижидкого металла, в технике – для сварки разнообразных материалов в виде листов, труб, для разрезания тросов, стержней, а также в горном деле. Отличительной особенностью проявления кумулятивного эффекта – усиленного в определенном направлении действия взрыва – является то, что последствия кумулятивного эффекта проявляются непосредственно на месте применения самого детонирующего взрывчатого вещества (ВВ) или на небольшом расстоянии от места взрыва, как в случае с получением ударного ядра, при этом дальнодействие кумулятивного эффекта ограничено расстоянием с десяток метров от места подрыва боевой части снаряда или мины.
Предлагается способ увеличения дальнодействия кумулятивного взрыва, при использовании которого можно получить направленный пучок высокоскоростных субмиллиметровых твердотельных частиц (поражающих элементов – ПЭ) со скоростями в десятки километров в секунду, при этом частицы могут быть из самых разнородных материалов и форм, что очень важно, например, при исследовании воздействия микрометеоритов на космические аппараты. Способ получения больших скоростей субмиллиметровыми твердотельными поражающими элементами отличается тем, что он основан на свойстве несжимаемости жидкости, в объеме которой помещены ПЭ, при этом сама жидкость заполняет полость кумулятивной выемки. Если кумулятивную полость заполнить, допустим, солидолом в объеме которого равномерно размещены субмиллиметровые стальные шарики, то при взрывном схлопывании кумулятивной полости, которая может быть воронкообразной, клиновидной или другой формы, консистентная масса солидола или другого вещества с находящими там шариками будет выдавливаться с большой скоростью в сторону действия сходящих детонационных волн, сообщая шарикам скорость до десятка километров в секунду направленным пучком. Такой способ получения больших скоростей малоразмерными ПЭ, для которых современные индивидуальные средства защиты бойца не являются препятствием, может получить самое широкое применение в минном деле, при производстве боевой части (БЧ) снарядов ствольной и ракетной артиллерии, в выстрелах для гранатометов. Эти ПЭ эффективны для поражения живой силы противника, средств наблюдения и навигации, автотранспорта, БАП, дронов и т.д. Указанный способ можно с большим эффектом применить в боеголовке (с сотней ПЭ) малогабаритных ракет с детонационными двигателями, используемых в качестве средства доставки с расстояний, недоступных для ответного удара.
В связи с тем, что получение больших скоростей субмиллиметровыми ПЭ направленным пучком осуществляется детонирующим ВВ, то проверка работоспособности предлагаемого способа опирается на законы физики, действие которых проверено в других сферах человеческой деятельности, и на здравый смысл жизненного опыта, по которому можно определить, что скорость поражающих элементов будет величиной такого порядка:
Vпэ = Vд 1sinα,
где: Vпэ – скорость поражающих элементов;
Vд – скорость детонационной волны;
2α−угол вершины конуса кумулятивной воронки.
При скорости детонации ВВ в 7–8 км/с, скорости ПЭ могут достигнуть такой же или большей величины в зависимости от инертности, вязкости и других свойств, находящейся в кумулятивной полости вещества.
Величину угла раствора кумулятивной воронки или клиновидной полости, материал их облицовки, а также вид используемой жидкости (по вязкости, по происхождению – органическая, минеральная или силиконовая, по коэффициенту трения и т.д.), размеры ПЭ и многие другие параметры можно оптимизировать опытным путем, как и в случае с совершенствованием существующих образцов кумулятивных зарядов. Поражающие факторы предлагаемого способа будут гораздо выше, чем, допустим, стрелкового оружия, ибо можно воздействовать на живую силу и технику противника, особенно на БАП и дроны, на большем удалении и с большей долей вероятности попадания в цель из-за большого количества ПЭ в одном выстреле, а также из-за возможности придания разлетающимся ПЭ форму направленного пучка, веера, круга или сферы, в зависимости от конструкции боеголовки.
Шамиль Абдуллаев
Шамиль Бабугаджиевич Абдуллаев – инженер, изобретатель.