Войти
НИИЯФ

В России разработана суперкомпьютерная микросхема на сверхпроводниках

3542
1
+13
НИИЯФ
Научно-исследовательский институт ядерной физики (НИИЯФ) имени Д.В. Скобельцына Московского Государственного университета имени М.В. Ломоносова.
Источник изображения: www.festivalnauki.ru

БиСКВИД может позволить уменьшить энергопотребление суперкомпьютеров на 6 порядков!

Учёные НИИЯФ и физического факультета МГУ разработали для логических элементов суперкомпьютера новую микросхему биСКВИД из сверхпроводящего материала, электрическое сопротивление которого равно нулю. Возможно, что изобретение позволит уменьшить энергопотребление суперкомпьютеров на 6 порядков!


Ранее ими была создана микросхема с аналогичным наименованием для сверхпроводниковых высоколинейных детекторов магнитного поля и высоколинейных низкошумящих усилителей.


«Сам биСКВИД был предложен нами ранее совместно с профессором физического факультета Виктором Корневым и использовался в устройствах аналоговой сверхпроводниковой электроники. Новость в том, что в нём сейчас используется джозефсоновский контакт с ферромагнетиком, и схема применяется для обратимых вычислений», – пояснил старший научный сотрудник НИИЯФ МГУ Игорь Соловьев.


Новая сверхпроводниковая обратимая схема для логических элементов суперкомпьютера биСКВИД. J1, J2 – джозефсоновские контакты, J3 (голубым цветом) – джозефсоновский контакт с ферромагнетиком
Источник: www.sinp.msu.ru

Наименование «биСКВИД» произошло от аббревиатуры «СКВИД» (от английского SQUID – Superconducting Quantum Interference Device) – сверхпроводящее квантовое интерференционное устройство, обладающее уникальной чувствительностью к магнитному полю. Приставка «би» в названии отражает объединение функций двух СКВИДов в одной схеме.


Известно, что высокое энергопотребление современных суперкомпьютеров является сложной проблемой на пути их дальнейшего развития. По оценкам учёных, дальнейшее увеличение производительности такими же темпами, как сегодня, приведёт к тому, что для работы одного суперкомпьютера следующего поколения потребуется персональный блок атомной электростанции.


«Энергопотребление зависит от ряда факторов, включая принципы реализации логических операций и выбор материалов, используемых для создания микросхем», – комментирует ситуацию доцент физического факультета МГУ Николай Кленов.


Процессы, протекающие во всех современных компьютерах – персональных и суперкомпьютерах, отличаются необратимостью. Это означает, что часть информации в процессе вычислений теряется, то есть по полученному результату мы не можем восстановить, что было на входе. Данная потеря информации сопровождается потерей энергии и увеличением температуры вычислительной машины, что было показано в 1961-м году в работе Р. Ландауэра. Использование полупроводниковых материалов, обладающих электрическим сопротивлением, также приводит к тому, что вычисления сопровождаются потерей энергии и разогревом ЭВМ. Для работы компьютера необходимо не только компенсировать потерю энергии, но и охлаждать микросхемы до рабочей температуры. Естественным выходом из сложившейся ситуации может стать использование обратимых логических операций, которые проходят без потери информации, и создание микросхем компьютера с использованием сверхпроводящих материалов, электрическое сопротивление которых равно нулю.


Кстати, недавно учёные США и Японии экспериментально показали, что энергопотребление сверхпроводниковых обратимых схем может быть более, чем на 6 порядков ниже энергопотребления существующих полупроводниковых аналогов, в то время как энергопотребление схем существующей цифровой сверхпроводниковой электроники ниже только на 3 порядка. Но исследуемые ими сверхпроводниковые схемы были достаточно громоздки по меркам современной нанотехнологии, что препятствует созданию на их основе суперкомпьютера.


Для решения проблемы сотрудники лаборатории физики наноструктур НИИЯФ МГУ, возглавляемой Михаилом Куприяновым, совместно с коллегами из физического факультета МГУ занялись созданием новых сверхпроводниковых обратимых схем. Недавно они разработали базовый элемент ячейки памяти суперкомпьютера – так называемый джозефсоновский контакт с ферромагнитным материалом. Это изобретение позволяет рассчитывать на создание компактной и энергоэффективной сверхпроводниковой памяти, отсутствие которой является существенным препятствием для практического применения существующей цифровой сверхпроводниковой технологии. Однако, логические операции, используемые в данной технологии, необратимы, а, следовательно, энергоэффективность схем невысока.


Чтобы добиться радикального уменьшения энергопотребления, на этот раз учёные НИИЯФ и физического факультета МГУ предложили новую сверхпроводниковую обратимую схему для логических элементов суперкомпьютера. В её состав входят три джозефсоновских контакта, один из них – ранее предложенный контакт с ферромагнетиком.


«Использование ферромагнетиков в сверхпроводниковых обратимых схемах позволяет значительно упростить их конструкцию, уменьшить размер и обеспечить адиабатическое протекание процесса обработки информации, – комментирует изобретение старший научный сотрудник НИИЯФ МГУ Игорь Соловьев. – По степени интенсивности энерговыделения процессы, протекающие в современных компьютерах и в предлагаемой нами схеме, можно сравнить с бурным течением горной реки на многочисленных порогах и с тихим, почти незаметным с виду, течением широкой, полноводной реки на равнине».


Осталось учёным проверить своё изобретение экспериментально. В случае выделения финансирования, лабораторные испытания могут пройти уже в этом году.


Вид постоянной составляющей профиля потенциала новой обратимой схемы биСКВИДа с джозефсоновским контактом с ферромагнетиком. Использование ферромагнетика обеспечивает существование эквипотенциальных траекторий эволюции системы в процессе передачи информации (показанных серыми стрелками), минимизирующих энерговыделение.
Источник: www.sinp.msu.ru

Группа под руководством А.Т.Рахимова проводит исследования по взаимодействию плазмы с современными материалами электроники с ультранизкой константой диэлектрической проницаемости. Подробности – в интервью с ведущим научным сотрудником отдела микроэлектроники НИИЯФ МГУ, кандидатом физико-математических наук Дмитрием Лопаевым.


Группа А.Т. Рахимова. Вверху слева направо: Алексей Зотович, Сергей Зырянов, Дмитрий Лопаев, Дмитрий Волошин, Константин Клоповский, Александр Палов, Юрий Манкелевич, Константин Курчиков, Александр Чукаловский Внизу слева направо: Ольга Прошина, Александр Ковалев, Татьяна Рахимова, Александр Рахимов, Анна Васильева
Источник: www.sinp.msu.ru

- Дмитрий Викторович, расскажите о своей работе в группе под руководством А.Т.Рахимова.


- Мы работаем с новыми нанопористыми материалами с низкой диэлектрической проницаемостью (low-k films), которые позволяют обеспечить распространение сигналов в новых чипах с высокой плотностью упаковки элементов – расстоянием (half-pitch) между элементами 10-22 нанометров. Чем меньше это расстояние, тем больше на одном квадратном сантиметре можно сделать элементов. Речь сейчас идёт о тысяче миллиардов элементов на квадратный сантиметр. Это процессоры, это память. Реально это такие вещи, когда на одной ладони у вас будут размещаться огромные вычислительные мощности.


- Насколько пористы материалы?


- До 50 процентов пористости. Это как в сыре с большим количеством близких к друг другу дырок. Размер типичной нанопоры – от 2 до 4 нанометров, то есть это фактически несколько слоёв атомов. Этот пористый материал очень лёгкий, легче, чем углеродные углепластики, но при этом он обладает очень высокой прочностью. В два раза прочнее кварца. Он напоминает пух или снег, но снег вы промнёте, а его нет. Он прочный, так как он связанный. Этот материал прессуют.


- Какова плотность?


- Плотность современных low-k диэлектриков порядка и менее одного грамма на кубический сантиметр.


- Что это за материалы и кто их производит?


- Все материалы предоставлены зарубежными партнёрами. В России нет таких материалов, так как нет производства.


Это органосиликатный материал, состоящий из кремния, кислорода, углерода и водорода. И называется поэтому SiOCH-материал. Это наиболее перспективный материал.


- В чём Ваш вклад?


- Мы начинали работать более шести лет назад. Второе уже было поколение этих материалов, и стояла задача внедрения технологии 22 нанометра, которые сейчас уже используются в процессорах последнего поколения от Intel. Это также твердотельные накопители, такие терабайтные диски вот такого размера, как Ваш мобильный телефон.


Наш вклад в технологию – то, что мы добываем знания о том, как деградируют эти материалы в плазме в условиях технологического процесса производства. То есть как происходят механизмы деградации во время травления. Зная это, можно предложить пути, как избежать деградации.


- Какие знания Вы получили по деградации?


- Дело в том, что материал очень пористый. Если в поры попадёт хоть немножко воды, материал как губка наглотается её и всё, диэлектрический материал не будет работать. Ведь вода обладает очень большой поляризуемостью, и, значит, будет большая диэлектрическая проницаемость. Поэтому материал должен быть гидрофобным.


Гидрофобность добивается с помощью CH3-метильных групп, покрывающих всю внутреннюю поверхность пор. Но, к сожалению, Si-СН3 группы очень сильно подвержены химическим реакциям с активными частицами – ионами, радикалами, фотонами, которые попадают в плёнку из плазмы во время технологического процесса. И вот задачи: понять, что происходит с Si-СН3 группами под действием плазмы; и как сделать так, чтобы они не удалялись, потому что как только СН3 группы удаляются, в поры проникает вода, и материал можно выбросить, так как происходит его деградация.


- И как быть?


- По принципу, как в «Кавказской пленнице»: тот, кто нам мешает, тот нам и поможет. Вот этот принцип был использован в нашей научной работе, он оказался очень жизненным.


- Как это возможно, расскажите?


- Оказалось, что те же жёсткие фотоны, но из другой плазмы, из благородной плазмы гелия, которые сильно поглощаются, они модифицируют не только поверхность, но и внутреннюю структуру SiO2 материала. И верхний слой материала сжимается. Если ещё бомбардируют ионы, разрушая связи, то образуется плотная корочка, но очень тонкая, толщиной всего в несколько нанометров. И получается, что мы материал запечатываем – и деградация не идёт, потому что туда ничего уже не проникает. Это было нами показано, да и технологи это освоили в производстве.


Но, к сожалению, избежать проникновения жёсткого излучения вглубь плёнки невозможно. Пытались закрывать сверху тоже слоями, тонкой корочкой, но она настолько тонкая, что излучение всё равно проникает, и деградация идёт даже под этой корочкой. И поэтому мы перешли к криогенным процессам. Это когда вы замораживаете при криогенной температуре – минус 100 – некие продукты в порах и спокойно делаете структуру. Таким образом не даёте проникнуть туда ни радикалам, ни чему-то ещё, что приводит к дефекту. После этого вы возгонкой, нагревая материал, удаляете из этих пор продукты, и получается, что вы сделали структуру, но не попортили соседний участочек.


- Какие ещё деградации материала наблюдаются во время технологического процесса?


- Нам нужно архитектуру слоя соединения в процессоре протравить. Но те радикалы, которые травят, это происходит обычно во фторуглеродной плазме, вызывают деградацию: они удаляют метильные группы, проникая по порам. Вы делаете структуру, всё протравили, а всё, что рядом, уже испорчено.


- Что делать в таком случае?


- Есть несколько способов. Вот сейчас непосредственно мы занимаемся тем, что выясняем, как происходит сам механизм травления, деградации уже с атомами фтора. Уже есть понимание. И нам очень сильно помогает то, что в университете много различного оборудования.


- Какие проводите диагностики?


- Приходится делать очень много сложных диагностик: FTIR, RBS, XRF, XPS. Вот XPS –это исследование поверхности с помощью излучения, когда вы фотонами жёсткими выбиваете электроны с нижних оболочек, а переходы с верхних оболочек характеризуют структуру материала. И, анализируя энергию, вы можете понять, потому что вы чувствуете химические сдвиги, его энергия зависит от элемента и с чем он химически связан. Анализируя эти спектры, можно понять с высочайшей точностью, как атомы связаны на поверхности. Я хочу сказать, для того чтобы провести только одну спектроскопическую эллипсометрию, которая имеет нанометровую чувствительность, нужен целый комплекс очень сложных диагностик. А это делать где-то на стороне очень дорого. Каждая диагностика – это тысячи долларов.


МГУ – одна из немногих организаций в мире, которая может себе позволить такую роскошь, как делать такие сложные исследования и делать сотни образцов. Мы ведём передовые исследования, потому что мы очень многое понимаем в исследовании современной плазмы.


Но всё равно в девелопмент, то есть в разработку конкретных вещей, мы не попадаём, это закрыто для нас, потому что это технология не российская. А создать свой центр разработки нужно. Иначе мы ничего своего не разработаем.


Права на интеллектуальную собственность остаются у нас. Если мы вдруг захотим какую-то технологию внедрить, вдруг она у нас разовьётся, мы то, что сделали, можем без всяких лицензий здесь применять.


Мы одни из очень немногих в России, кто исследует нанопористые материалы. Мы сейчас маленький осколок. России нужен некий центр. В таком центре таких групп, как наша, должно быть много по разным направлениям, но для них должен быть некий куб чистых комнат, в которых, как в конструкторе, я мог бы собрать разные технологии. Не менеджеров собрать, а технологии, именно когда стоят различные приборы, различные технологические линии. Я мог бы арендовать у какой-то западной компании, поэтому нужны некоммерческие соглашения. Тогда возможно разрабатывать, и всё, что вы сделали – ваше. У нас должна быть своя электроника.


Васильева Анна Людвиговна

Права на данный материал принадлежат НИИЯФ
Материал размещён правообладателем в открытом доступе
  • В новости упоминаются
1 комментарий
№1
10.04.2014 16:37
Похоже на очередные "Наносказки" от Медведева...
-4
Сообщить
Хотите оставить комментарий? Зарегистрируйтесь и/или Войдите и общайтесь!
ПОДПИСКА НА НОВОСТИ
Ежедневная рассылка новостей ВПК на электронный почтовый ящик
  • Разделы новостей
  • Обсуждаемое
    Обновить
  • 25.12 03:59
  • 1
Ответ на "Перейти на Ту: каким будет новый стратегический самолет-ракетоносец"
  • 25.12 03:54
  • 6623
Без кнута и пряника. Россия лишила Америку привычных рычагов влияния
  • 24.12 15:44
  • 3
Немного о терминах.
  • 24.12 14:07
  • 1
Китайская Agibot начала массовое производство гуманоидных роботов, опередив Tesla
  • 24.12 13:29
  • 8553
Минобороны: Все авиаудары в Сирии пришлись по позициям боевиков
  • 24.12 09:41
  • 0
Новый мировой порядок: Минск предлагает свою модель безопасности
  • 24.12 05:28
  • 0
Может ли помочь авиация НАТО Бандеростану? И, если да, то чем?
  • 24.12 03:39
  • 1
Перейти на Ту: каким будет новый стратегический самолет-ракетоносец
  • 23.12 21:40
  • 0
Ответ на "В РФ ведется плановая замена кораблей третьего поколения на подлодки четвертого"
  • 23.12 13:31
  • 67
Уроки Сирии
  • 23.12 11:47
  • 2
Россия готова к дуэли "Орешника" и западных ПВО - Путин
  • 23.12 04:01
  • 1
Китайский флот нарастил количество установок вертикального пуска ракет до 50% от имеющихся в ВМС США
  • 23.12 03:15
  • 1
Ответ на "«Прототип бомбардировщика ПАК-ДА может быть близок к завершению»: британский министр оценил состояние стратегической авиации РФ"
  • 23.12 01:25
  • 1
Путин заявил, что уберег Россию, как просил Ельцин
  • 23.12 01:20
  • 1
Путин: бездействие РФ в 2022 году стало бы преступлением в отношении народа